Copied to
clipboard

G = C52⋊C12order 300 = 22·3·52

The semidirect product of C52 and C12 acting faithfully

metabelian, soluble, monomial, A-group

Aliases: C52⋊C12, C5⋊D5.C6, C5⋊F5⋊C3, C52⋊C32C4, C52⋊C6.1C2, SmallGroup(300,24)

Series: Derived Chief Lower central Upper central

C1C52 — C52⋊C12
C1C52C5⋊D5C52⋊C6 — C52⋊C12
C52 — C52⋊C12
C1

Generators and relations for C52⋊C12
 G = < a,b,c | a5=b5=c12=1, ab=ba, cac-1=a-1b, cbc-1=a3b3 >

25C2
25C3
3C5
3C5
25C4
25C6
15D5
15D5
25C12
15F5
15F5

Character table of C52⋊C12

 class 123A3B4A4B5A5B6A6B12A12B12C12D
 size 125252525251212252525252525
ρ111111111111111    trivial
ρ21111-1-11111-1-1-1-1    linear of order 2
ρ311ζ32ζ3-1-111ζ3ζ32ζ6ζ6ζ65ζ65    linear of order 6
ρ411ζ3ζ321111ζ32ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ511ζ3ζ32-1-111ζ32ζ3ζ65ζ65ζ6ζ6    linear of order 6
ρ611ζ32ζ31111ζ3ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ71-111-ii11-1-1i-ii-i    linear of order 4
ρ81-111i-i11-1-1-ii-ii    linear of order 4
ρ91-1ζ3ζ32-ii11ζ6ζ65ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    linear of order 12
ρ101-1ζ32ζ3-ii11ζ65ζ6ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    linear of order 12
ρ111-1ζ3ζ32i-i11ζ6ζ65ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    linear of order 12
ρ121-1ζ32ζ3i-i11ζ65ζ6ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    linear of order 12
ρ1312000002-3000000    orthogonal faithful
ρ141200000-32000000    orthogonal faithful

Permutation representations of C52⋊C12
On 15 points - transitive group 15T19
Generators in S15
(1 9 6 12 15)(2 10 7 13 4)(3 14 11 5 8)
(1 6 15 9 12)(2 4 13 7 10)
(1 2 3)(4 5 6 7 8 9 10 11 12 13 14 15)

G:=sub<Sym(15)| (1,9,6,12,15)(2,10,7,13,4)(3,14,11,5,8), (1,6,15,9,12)(2,4,13,7,10), (1,2,3)(4,5,6,7,8,9,10,11,12,13,14,15)>;

G:=Group( (1,9,6,12,15)(2,10,7,13,4)(3,14,11,5,8), (1,6,15,9,12)(2,4,13,7,10), (1,2,3)(4,5,6,7,8,9,10,11,12,13,14,15) );

G=PermutationGroup([[(1,9,6,12,15),(2,10,7,13,4),(3,14,11,5,8)], [(1,6,15,9,12),(2,4,13,7,10)], [(1,2,3),(4,5,6,7,8,9,10,11,12,13,14,15)]])

G:=TransitiveGroup(15,19);

On 25 points: primitive - transitive group 25T26
Generators in S25
(1 11 8 2 5)(3 13 20 25 24)(4 16 6 23 15)(7 9 18 19 14)(10 21 17 12 22)
(1 21 18 24 15)(2 22 7 20 6)(3 4 11 17 19)(5 10 9 25 23)(8 12 14 13 16)
(2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25)

G:=sub<Sym(25)| (1,11,8,2,5)(3,13,20,25,24)(4,16,6,23,15)(7,9,18,19,14)(10,21,17,12,22), (1,21,18,24,15)(2,22,7,20,6)(3,4,11,17,19)(5,10,9,25,23)(8,12,14,13,16), (2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25)>;

G:=Group( (1,11,8,2,5)(3,13,20,25,24)(4,16,6,23,15)(7,9,18,19,14)(10,21,17,12,22), (1,21,18,24,15)(2,22,7,20,6)(3,4,11,17,19)(5,10,9,25,23)(8,12,14,13,16), (2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25) );

G=PermutationGroup([[(1,11,8,2,5),(3,13,20,25,24),(4,16,6,23,15),(7,9,18,19,14),(10,21,17,12,22)], [(1,21,18,24,15),(2,22,7,20,6),(3,4,11,17,19),(5,10,9,25,23),(8,12,14,13,16)], [(2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25)]])

G:=TransitiveGroup(25,26);

On 30 points - transitive group 30T78
Generators in S30
(2 17 26 20 11)(3 27 12 18 21)(5 29 14 8 23)(6 15 24 30 9)
(1 16 25 19 10)(2 20 17 11 26)(3 27 12 18 21)(4 28 13 7 22)(5 8 29 23 14)(6 15 24 30 9)
(1 2 3 4 5 6)(7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30)

G:=sub<Sym(30)| (2,17,26,20,11)(3,27,12,18,21)(5,29,14,8,23)(6,15,24,30,9), (1,16,25,19,10)(2,20,17,11,26)(3,27,12,18,21)(4,28,13,7,22)(5,8,29,23,14)(6,15,24,30,9), (1,2,3,4,5,6)(7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30)>;

G:=Group( (2,17,26,20,11)(3,27,12,18,21)(5,29,14,8,23)(6,15,24,30,9), (1,16,25,19,10)(2,20,17,11,26)(3,27,12,18,21)(4,28,13,7,22)(5,8,29,23,14)(6,15,24,30,9), (1,2,3,4,5,6)(7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30) );

G=PermutationGroup([[(2,17,26,20,11),(3,27,12,18,21),(5,29,14,8,23),(6,15,24,30,9)], [(1,16,25,19,10),(2,20,17,11,26),(3,27,12,18,21),(4,28,13,7,22),(5,8,29,23,14),(6,15,24,30,9)], [(1,2,3,4,5,6),(7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30)]])

G:=TransitiveGroup(30,78);

Polynomial with Galois group C52⋊C12 over ℚ
actionf(x)Disc(f)
15T19x15+x10-2x5-1515·710

Matrix representation of C52⋊C12 in GL12(ℤ)

010000000000
001000000000
000100000000
-1-1-1-100000000
000001000000
000000100000
000000010000
0000-1-1-1-10000
000000000001
00000000-1-1-1-1
000000001000
000000000100
,
100000000000
010000000000
001000000000
000100000000
0000-1-1-1-10000
000010000000
000001000000
000000100000
000000000100
000000000010
000000000001
00000000-1-1-1-1
,
000010000000
000000010000
000001000000
0000-1-1-1-10000
000000001000
000000000001
000000000100
00000000-1-1-1-1
100000000000
000100000000
010000000000
-1-1-1-100000000

G:=sub<GL(12,Integers())| [0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1],[0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0] >;

C52⋊C12 in GAP, Magma, Sage, TeX

C_5^2\rtimes C_{12}
% in TeX

G:=Group("C5^2:C12");
// GroupNames label

G:=SmallGroup(300,24);
// by ID

G=gap.SmallGroup(300,24);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,5,30,483,1928,173,3004,2859,1014]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^12=1,a*b=b*a,c*a*c^-1=a^-1*b,c*b*c^-1=a^3*b^3>;
// generators/relations

Export

Subgroup lattice of C52⋊C12 in TeX
Character table of C52⋊C12 in TeX

׿
×
𝔽